1 \triangle ABC において、AB=4、BC=7、AC=5 とする。

このとき、 $\cos \angle BAC = -\frac{1}{5}$ 、 $\sin \angle BAC = \frac{2\sqrt{6}}{5}$ である。

この内接円と辺 AB との接点を D, 辺 AC との接点を E とする。

線分 BE と線分 CD の交点を P, 直線 AP と辺 BC の交点を Q とする。

$$\frac{BQ}{CQ} = \frac{\boxed{\textit{D}}}{\boxed{\textit{T}}}$$
 であるから, $BQ = \boxed{\boxed{\textit{D}}}$ であり, $\triangle ABC$ の内心を I とすると

$$IQ = \frac{\sqrt{\forall}}{\boxed{\flat}} \ \text{rbs} \ \delta_{\delta}$$

また、直線 CP と $\triangle ABC$ の内接円との交点で D とは異なる点を F とすると

$$\cos \angle DFE = \frac{\sqrt{|xt|}}{|y|}$$
 である。

解答
$$\frac{\sqrt{(\mathcal{T})}}{(\mathcal{A})}$$
 $\frac{\sqrt{6}}{2}$ $(\dot{\mathcal{T}})$ 1 $\frac{(\underline{x})\sqrt{(\underline{x}\underline{x}\underline{y})}}{(\underline{x}\underline{y})}$ $\frac{2\sqrt{15}}{5}$ $\frac{(\underline{\mathcal{T}})}{(\underline{\mathcal{T}})}$ $\frac{3}{4}$ (コ) 3 $\frac{\sqrt{(\underline{y}\underline{y})}}{(\dot{\mathcal{Y}})}$ $\frac{\sqrt{6}}{2}$ $\frac{\sqrt{(\underline{x}\underline{y})}}{(\underline{y})}$ $\frac{\sqrt{15}}{5}$

2 △ABC において AB=2, AC=1, ∠A=90° とする。

点 A を通り点 D で辺 BC に接する円と辺 AB との交点で A と異なるものを E とすると,

次の $\boxed{\hspace{1cm}}$ には下の $\hspace{1cm}$ \bigcirc \bigcirc \bigcirc から, $\boxed{\hspace{1cm}}$ せ には $\hspace{1cm}$ いら当てはまるものを一つずつ選べ

$$0$$
 < 0 = 0 > 0 A 0 C その交点を F とすると, $\frac{CF}{AF} = \frac{\boxed{\flat}}{\boxed{\lambda}}$ であるから, $CF = \frac{\boxed{t}}{\boxed{y}}$ である。

したがって、BFの長さが求まり、 $\frac{CF}{AC} = \frac{BF}{AB}$ であることがわかる。

次の \boxed{g} には下の $\boxed{0}$ ~ $\boxed{3}$ から当てはまるものを一つ選べ。

点 D は △ABF の タ。

- 外心である ① 内心である
- ② 重心である
- ③ 外心,内心,重心のいずれでもない

解答
$$\frac{(\mathcal{T})\sqrt{(\mathcal{X})}}{(\dot{\mathcal{T}})}$$
 $\frac{2\sqrt{5}}{3}$ $\frac{(\pi x)}{(\pi)}$ $\frac{20}{9}$ $\frac{(*\mathcal{T})}{(\mathcal{T})}$ $\frac{10}{9}$ (コ) $\mathbf{0}$ (サ) $\mathbf{0}$ $\frac{(\dot{\mathcal{T}})}{(\mathcal{X})}$ $\frac{5}{8}$ $\frac{(\dot{\mathcal{T}})}{(\mathcal{Y})}$ $\frac{5}{3}$ (タ) $\mathbf{0}$